ВЕРИФИКАЦИЯ FLOWVISION ВЕРСИИ 3.08. ЧАСТЬ 1.

А.С. Шишаева, С.В. Жлуктов, П.И. Карасев

ООО ТЕСИС, г. Москва, 2011

1. Естественная конвекция около вертикальной пластины

Постанова задачи

2D

Моделируется естественная ламинарная конвекция воздуха около вертикальной пластины (в поле силы тяжести).

Параметры геометрии:							
Lw	1	Μ					
b	1	Μ					
L	2	Μ					
Парал	летры газа:						
Μ	0.0289	кг моль ⁻¹					
μ	0.0000182	кг м ⁻¹ с ⁻¹					
λ	0.026	Вт м ⁻¹ К ⁻¹					
Cp	1009	Дж кг⁻¹ К⁻¹					
β	0.0033	K⁻¹					
Входн	ые парамеп	пры:					
T _w	303	К					
T ₀	273	К					
Безра	Безразмерные параметры:						
Gr	$4.85*10^{6}$						
Pr	0.7						

Граничные параметры: Температура пластины: Температура воздуха вдали от пластины

T_w T₀

Расчетная сетка

Расчетная сетка 46x81x1 Общее число ячеек 3 700

Теория

Среднее число Нуссельта на стенке [1]: $Nu_L = 0.516 (Gr_L \ Pr)^{0.25}$

Результаты

	Теория	Моделирование	Погрешность, %
Nu	22.2	22.18	0.084

Литература

1. Шлихтинг Г., «Теория пограничного слоя», М. 1974

2. Адиабатическое сжатие газа поршнем

Постановка задачи

Параметры геометрии:									
L	0.945	Μ							
Парал	Параметры вещества:								
М	0.029	кг моль⁻ ¹							
μ	0.0000182	кг м ⁻¹ с ⁻¹							
λ	0.026	Вт м ⁻¹ К ⁻¹							
Cp	1006	Дж кг⁻¹ К⁻¹							
γ	1.4								
Начал	ьные услови	เя:							
P _{abs,0}	101000	Па							
T _{abs,0}	273	К							
Парал	Параметры поршня:								
Up	1	M C ⁻¹							

Расчетная сетка

Расчетная сетка 100x1x1 Общее число ячеек 1000

Теория

Относительное давление [1]:

$$P = P_{abs,0} \left(\frac{1}{1 - \frac{ut}{L}}\right)^{\gamma} - 101000$$

Относительная температура [1]:

$$T = T_{abs,0} \left(\frac{P_{abs}}{P_{abs,0}}\right)^{\frac{\gamma-1}{\gamma}} - 273$$

Результаты

Зависимость давления от времени.

Зависимость температуры от времени.

Ссылки

1. Д.В.Сивухин, Общий курс физики, Механика, М. 1979, 520 с.

3. Течение в сопле Лаваля

Постановка задачи

Граничные условия:

Вход полное давление и полная температура. Выход статическое давление.

Параметры геометрии:								
L	2.54	Μ						
$R = \begin{cases} \sqrt{3.6 \cdot 10^{4} - 1.54 \cdot 10^{4} \cos((7.87 \cdot 10^{4} \cdot x - 1) \cdot 3.14)}, x < 1.27\\ \sqrt{2.57 \cdot 10^{4} - 0.54 \cdot 10^{4} \cos((7.87 \cdot 10^{4} \cdot x - 1) \cdot 3.14)}, x > 1.27\end{cases}$								
Параметр	ры вещества:							
m	0.0289	кг моль⁻¹						
Cp	1009	Дж кг ⁻¹ К ⁻¹						
Входные параметры:								
P _{t, in}	6895	Па						
T _{t, in}	125	К						
P _{st, out}	6136.6; 5171; 1103	Па						

Расчетная сетка

Задача решается в 1-градусном секторе Расчетная сетка 1000x1x1 Общее число ячеек 1000

Теория

Скорость в сечении А рассчитываются по следующей формуле [1]:

$$\frac{A}{A_{cr}} = \left(\frac{2}{\gamma + 1}\right)^{\frac{1}{\gamma - 1}} \left[\lambda \left(1 - \frac{\gamma - 1}{\gamma + 1}\lambda^2\right)^{\frac{1}{\gamma - 1}}\right]^{-1}$$

Здесь: $\lambda = V/a$

$$a_{cr} = V_{cr} = \sqrt{2 \frac{\gamma}{\gamma + 1} \frac{R_A}{m} T_{t \text{ in}}}$$

Статическое давление рассчитывается по следующей формуле [1]:

$$\mathbf{P} = \mathbf{P}_{t \text{ in}} \left(1 - \frac{\gamma - 1}{\gamma + 1} \lambda^2 \right)^{\frac{\gamma}{\gamma - 1}}$$

Распределение давления и числа Маха вдоль трубы при заданных входных условиях можно посмотреть в [2].

Результаты

Распределение Числа Маха в сопле при сверхзвуковом течении

Распределение давления при сверхзвуковом течении в сопле

Распределение числа Маха при трансзвуковом течении в сопле

Распределение давления при трансзвуковом течении в сопле

Распределение давления при дозвуковом течении в сопле

Ссылки

- 1. Лойцянский Л.Г. Механика жидкости и газа. 7-е изд., испр. М.: Дрофа, 2003
- 2. http://www.grc.nasa.gov/WWW/wind/valid/cdv/cdv.htmlo

4. Косой скачок уплотнения

Постановка задачи

2D

Геометрия:								
θ	15 [°]							
Свой	Свойства вещества:							
М	0.0288	кг моль ⁻¹						
μ	0	кг м ⁻¹ с ⁻¹						
λ	0	Вт м ⁻¹ К ⁻¹						
Cp	1006	Дж кг⁻¹ К⁻¹						
k	1.4							
Bxod	ные пара	метры:						
P ₁	101 400	Па						
T ₁	923	К						
V ₁	1525	M C ⁻¹						
M_1	2.5							

Клин с углом $\boldsymbol{\theta}$ обтекается сверхзвуковым потоком.

Расчетная сетка

Расчетная сетка 150x100x1 Общее число ячеек 13 000

Теория

Соотношение между углом клина θ и углом отхода скачка β [1]:

$$tg\theta = \frac{\sin^2 \beta - \frac{1}{M_1^2}}{\frac{k+1}{2} - \sin^2 \beta + \frac{1}{M_1^2}} ctg\beta$$

1

Соотношение для статического давления до и после скачка [1]:

$$\frac{P_2}{P_1} = \frac{2k}{k+1} M_1^2 \sin^2 \beta - \frac{k-1}{k+1}$$

Соотношение для плотности до и после скачка [1]:

$$\frac{\rho_2}{\rho_1} = \frac{\frac{k+1}{2}M_1^2 \sin^2 \beta}{1 + \frac{k-1}{2}M_1^2 \sin^2 \beta}$$

Соотношение для числа Маха после скачка [1]:

$$M_{2} \sin^{2}(\beta - \theta) = \sqrt{\frac{1 + \frac{k - 1}{2} M_{1}^{2} \sin^{2} \beta}{k M_{1}^{2} \sin^{2} \beta - \frac{k - 1}{2}}}$$

Соотношение для полного давления до и после скачка [1]:

$$\frac{P_{20}}{P_{10}} = \left(\frac{k+1}{2}\right)^{\frac{k+1}{k-1}} \frac{\left(M_{1}\sin\beta\right)^{\frac{2k}{k-1}}}{\left(1 + \frac{k-1}{2}M_{1}^{2}\sin^{2}\beta\right)^{\frac{k}{k-1}} \left(kM_{1}^{2}\sin^{2}\beta - \frac{k-1}{2}\right)^{\frac{1}{k-1}}}$$

Результаты

	Теория	Погрешность расчета, %
M ₂	1.875	+0.2
Р₂, Па	250 000	-0.2
Р ₀₂ , Па	1 608 000	0.2
T ₂ , K	1220	-0.09
T ₀₂ , K	2076.6	0.0002
ρ ₂	0.711	-0.078

Ссылки

1. Лойцянский Л.Г. Механика жидкости и газа. – 7-е изд., испр. – М.: Дрофа, 2003

5. Дозвуковое течение около профиля NACA0012 М=0.3, углы атаки=0...12°

Постановка задачи

2D

• •	
Стенка:	адиабатическая
Внешние границы:	неотражающие

Геометрия:							
С	0.254 м						
Свойст	ва воздуха	;					
станда	отные						
Входнь	іе парамет	ры					
(разме	рные):						
T _{in}	273	С					
P _{in}	101325	Па					
V_{in}	99.55	M C ⁻¹					
α	012	град.					
Входные параметры							
(безразмерные):							
Μ	0.3						
Re	1 900 000						

Расчетная сетка

Начальная сетка 779х318х1 Адаптация до 3 уровня по поверхности профиля Общее число ячеек 590000

Угол атаки,	Экспер	оимент			По	грешност	ь расчета,	%		
град			Kt	KES KEN		SST		SA		
	CL	CD	CL	CD	CL	CD	CL	CD	CL	CD
0	0	0.0103	-	-1.30	-	0.15	-	0.09	-	-29.45
3	0.306	0.0106	0.77	-7.43	3.49	-5.86	1.26	-5.56	3.49	-34.82
6	0.602	0.0111	-2.09	-36.51	0.19	-62.91	2.33	-29.81	-3.67	-57.73
10	1.02	0.0193	1.10	-31.40	6.13	-43.56	10.50	-49.55	6.13	-43.56

Результаты

Комментарий:

Ламинарно-турбулентный переход не моделируется. Весь пограничный слой полагается турбулентным.

Ссылки

1. N. Gregory and P.G. Wilby, **'NPL 9615 and NACA 0012. A Comparison of Aerodynamic Data'** Ministry of Defence, Aeronautical Research Council. C.P. No. 1261 London: Her Majesty's Stationery office, 1973.

6. Трансзвуковое течение около профиля NACA0012 M=0.7, углы атаки = -0.001...4.8°

Постановка задачи

2D

Расчетная сетка

Расчетная сетка 345х224х1

Адаптация по поверхности профиля и в параллелепипеде в районе скачка до 2 уровня Общее число ячеек 264000

Результаты

Угол	Экспе	римент			Погр	ешность	расчета, 9	%		
атаки,			K	ΈS	KE	EN	SS	ST	S	A
град	CL	C _D	CL	C _D	CL	C _D	C_L	C _D	C_L	C _D
-0.001	-0.0016	0.00803	-	-12.09						
1.49	0.247	0.00819	7.79	-15.70	9.80	-15.40	15.44	-15.24	7.07	-20.92
4.8	0.737	0.03466	4.66	-14.97	8.26	-11.16	10.28	-8.20	6.15	-13.37

График зависимости коэффициента подъемной силы от угла атаки

График зависимости коэффициента сопротивления от угла атаки

Комментарий:

Ламинарно-турбулентный переход не моделируется. Весь пограничный слой полагается турбулентным.

Ссылки

1. Terry L. Holst, 'Computational Fluid Dynamics. Drag Prediction-Results from the Viscous Transonic Airfoil Workshop' Ames Research Center, Moffett Field, California, 1988.

7. Трансзвуковое течение около профиля RAE 2822 M= 0.729, угол атаки = 2.31°

Постановка задачи

2D

Хорда:	С
Угол атаки:	α
Внешние границы:	20с вперёд , вверх и вниз, 26с назад
Граничные условия:	
Стенка:	адиабатическая
Внешние границы:	неотражающие

Геометрия:								
С	0.3048	Μ						
Свойст	Свойства воздуха:							
стандар	отные							
Входнь	іе параметры (р	азмерные):						
T _{in}	255.6	С						
P _{in}	108988	Па						
V_{in}	233.585	M C ⁻¹						
α	2.31	град.						
Входнь	Входные параметры							
(безразмерные):								
М	0.729							
Re	$6.5 \cdot 10^{6}$							

Расчетная сетка

Расчетная сетка 349х186х1

Адаптация до 2 уровня по поверхности крыла и в параллелепипеде в районе скачка Общее число ячеек 190 000

Результаты

Распределение - Сроколо профиля

Комментарий:

Ламинарно-турбулентный переход не моделируется. Весь пограничный слой полагается турбулентным.

Ссылки

1. Cook, P.H., M.A. McDonald, M.C.P. Firmin, "Aerofoil RAE 2822 - Pressure Distributions, and Boundary Layer and Wake Measurements," *Experimental Data Base for Computer Program Assessment*, AGARD Report AR 138, 1979.

Трансзвуковое обтекание крыла ONERA M6, M= 0.839, угол атаки = 3.06°

Постановка задачи					
3D					
Хорда:	С				
Угол атаки:	α				
Внешние границы:	10с вперёд, назад, вверх и вниз				
Граничные условия:					
Стенка:	адиабатическая				
Внешние границы:	неотражающие				

Геометрия:				
С	0.3048 м			
Свойства воздуха:				
стандар	отные			
Входные параметры (размерные):				
T _{in}	255.6	С		
P_{in}	8.05·10 ⁴	Па		
V _{in}	269	M C ⁻¹		
α	3.06	град.		
Входные параметры				
(безразмерные):				
Μ	0.839			
Re	$11.7 \cdot 10^{6}$			

Расчетная сетка

Расчетная сетка 157х104х96 Адаптация до 2 уровня по поверхности крыла (10 слоёв самых мелких ячеек) Общее количество ячеек 2 680 000

Результаты

Распределение коэффициента давления вдоль крыла:

b - размах крыла

у - расстояние от плоскости симметрии

Распределение -Ср в сечении y/b= 0.2

Распределение -Ср в сечении у/b= 0.44

Распределение -Ср в сечении у/b= 0.8

Распределение -Ср в сечении y/b= 0.9

Распределение -Ср в сечении у/b= 0.95

Комментарий:

Ламинарно-турбулентный переход не моделируется. Весь пограничный слой полагается турбулентным.

Анализ:

- 1. Зона скачка плохо разрешена.
- 2. Результат следует рассматривать как предварительный.

Ссылки

1. Schmitt, V. and F. Charpin, Pressure Distributions on the ONERA-M6-Wing at Transonic Mach Numbers// *Experimental Data Base for Computer Program Assessment*. Report of the Fluid Dynamics Panel Working Group 04, AGARD AR 138, May 1979.

9. Трансзвуковое обтекание самолета DLR-F6

Постановка задачи

3	D
-	-

Угол атаки:	α
Внешние границы:	10 размеров самолета вперёд, назад, вверх и вниз

Граничные условия:

Стенка: адиабатическая Внешние границы: неотражающие

Расчетная сетка

Свойства воздуха:

кг моль-1

кг м⁻¹ с⁻¹

Вт м⁻¹ К⁻¹

Дж кг⁻¹ К⁻¹

К

Па

м с⁻¹

град

0.0288

0.026 1009

(размерные): Т_{in} 247.68

> 237 0

1.57·10⁵

Входные параметры

1.01.105

Входные параметры

(безразмерные):

0.75

Μ

μ

λ

Cp

T_{in} P_{in}

Vin

α

Μ

Расчетная сетка 250х82х126 Адаптация до 4 уровня по поверхности самолета Общее количество ячеек 12 500 000

Результаты

Распределение коэффициента давления вдоль крыла:

- b размах крыла
- у расстояние от плоскости симметрии

	Эксперимент [1]	Погрешность	
		расчета, %	
C∟	0.4	2	
C _D	0.03	-17.7	

Комментарий:

Ламинарно-турбулентный переход не моделируется. Весь пограничный слой полагается турбулентным.

Анализ:

- 1. Крыло и зона пилона разрешены недостаточно.
- 2. Результат следует рассматривать как предварительный.

Ссылки

 O. Brodersen, A.Stürmer Drag prediction of engine-airframe interference effect using unstructured Navier-Stokes calculation// AIAA 2001-2414, 19th AIAA Applied aerodynamic conference ,11-14 June 2001, Anaheim, California

10. Трансзвуковое обтекание самолета DLR-F4

Расчетная сетка

Адаптация до 4 уровня по поверхности самолета Общее число расчетных ячеек: 13 736 000

Угол атаки	CD		CL
-4.00)	0.02275	0.04745
-3.00)	0.02363	0.16425
-2.00)	0.02430	0.26909
-1.00)	0.02844	0.38541
0.00)	0.03311	0.49781
1.00)	0.03959	0.60623
2.00)	0.05468	0.73619
3.00)	0.06993	0.79607
4.00		0.08489	0.86652

Рассчитанные значения коэффициентов сопротивления и подъемной силы.

Буквой z обозначена безразмерная длина крыла, отсчитываемая от плоскости симметрии.

Распределение -Ср в сечении z = 0.185.

Распределение -Ср в сечении z = 0.331.

Распределение -Ср в сечении z = 0.512.

Распределение - Ср в сечении z = 0.844.

Зависимость коэффициента подъемной силы С_L от угла атаки.

Зависимость коэффициента сопротивления С_D от угла атаки.

Поляра C_L vs. C_D.

Ссылки

- 1. "AGARD-AR-303 Vol. II, DLR-F4 wing body configuration", G. Redeker, August 1994
- Файл «bwma75.txt» взятый с сайта: http://aaac.larc.nasa.gov/tsab/cfdlarc/aiaa-dpw/Workshop1/workshop1.html
- Файл «cpnlr.txt» взятый с сайта: http://aaac.larc.nasa.gov/tsab/cfdlarc/aiaa-dpw/Workshop1/workshop1.html