

Решение задач внешнего обтекания с использованием различных моделей турбулентности в FlowVision

П.Н. Субботина, ООО «ТЕСИС»

Бурное развитие численного моделирования в области решения задач гидроаэродинамики привело, в том числе к появлению огромного количества моделей турбулентности. При этом зачастую разработка этих моделей и их модификация проводится авторами для довольно узкого класса задач. Это приводит к тому, что для решения инженерных задач требуется проведение исследований с целью определения границ применимости существующих моделей турбулентности, сравнения их между собой и выработки рекомендаций для их практического использования.

Исследованы целесообразность использования и границы применимости той или иной модели турбулентности. На основании проведенного сравнения сформулированы рекомендации для практического использования данных моделей при решении инженерных задач (течения в каналах, обтекание препятствий, течение около хорошо и плохо обтекаемых тел).

Численное моделирование выполнено на основе гидродинамического кода <u>FlowVision</u> [11], реализующего конечно-объемный подход для аппроксимации уравнений математической модели. Уравнения Навье-Стокса решаются методом расщепления по физическим процессам (проекционный метод MAC).

Обзор используемых моделей турбулентности и граничных условий

Все существующие модели турбулентности основаны на предположении о том, что динамическая вязкость жидкости/газа может быть представлена в следующем виде:

$$\mu = \mu_1 + \mu_t, \tag{1}$$

где μ_l – молекулярная вязкость, μ_t – турбулентная вязкость.

В зависимости от количества переменных, входящих в выражение для турбулентной вязкости, модели турбулентности могут быть условно разделены на одно- и двух-параметрические:

1. двухпараметрические модели:

а. стандартная k-є модель (KES) [1]

$$\mu_{\rm t} = C_{\mu} \rho \frac{k^2}{\epsilon} \,, \ C_{\mu} = 0.09$$
 (2)

где ρ – плотность, k – турбулентная энергия, ϵ – турбулентная диссипация.

b. нелинейная (квадратичная) k-є модель (KEQ) [2]

$$\mu_{\rm t} = C_{\mu} \rho \frac{k^2}{\epsilon}$$
, C_{μ} – переменная величина. (3)

с. SST (Shear Stress Transport) - комбинация k-ε и k-ω моделей (SST) [3]

$$M_{t} = \rho \frac{0.31k}{\text{max}[0.31\text{ u}, \text{S} \cdot \text{F}_{2}]}, \text{ u} = \frac{e}{\text{B}_{\infty}^{*}k}, \text{ } \beta_{\infty}^{*} = \text{C}_{\mu} = 0.09$$
(4)

где ω – удельная турбулентная диссипация.

2. однопараметрическая модель Spallart-Almares (SA) [1]

$$\mu_{t} = \rho v_{t} f_{v1} \tag{5}$$

3. низкорейнольдсовые модификации k-є модели:

а. k-є модель Abe-Kondoh-Nagano, 1994 (KEAKN) [4]

$$\mu_{t} = C_{\mu} \rho \frac{k^{2}}{\varepsilon} f_{\mu} \tag{6}$$

127083, Россия, Москва, ул.Юннатов 18, офис 705 Тел/факс: +7 (495) 612 44 22, 612 42 62 E-mail: info@tesis.com.ru

Измерительное оборудование

b. k- \(\varepsilon\) moдель Launder-Sharma, 1974 (KELS) [4]

$$\mu_{t} = C_{\mu} \rho \frac{k^{2}}{\tilde{\epsilon}} f_{\mu}, \ \tilde{\epsilon} = \epsilon - 2\nu \left(\nabla \sqrt{k} \right)^{2} \tag{7}$$

с. k- \(\varepsilon\) модель Hwang-Lin, 1999 (KEHL) [5], используется выражение (7).

Все перечисленные модели турбулентности в приграничных ячейках расчетной сетки используют следующие пристенные функции для скорости:

Введём безразмерное расстояние до стенки $y^+ = \frac{u_\tau y}{v}$ и скорость сдвига u_τ : $\tau_w = \rho u_\tau^2$

Вязкие напряжения на стенке (τ_w) вычисляются с использованием пристеночной функции для скорости:

Вязкий подслой ($y^+ < 2.5 \div 3$):

$$au = \rho u_{\tau}^2 = \mu \frac{U}{y}$$
 или иначе $u^+ = y^+ = \frac{U}{u_{\tau}}$ (8)

Логарифмический слой (30 < v⁺ < 300):

$$\tau_w = \rho u_\tau^2$$
, u_τ находится из уравнения $u^+ = \frac{1}{\kappa} \ln(Ey^+)$ (9)

Сшивка вязкого и логарифмического слоев (3 < у+ < 30):

$$y_*^+ = \frac{1}{\kappa} \ln(Ey_*^+), \quad \kappa = 0.41, E = 9$$
 (10)

для $y^+ < y_*^+$: вязкий подслой

для $y^+ > y_*^+$: логарифмический слой.

Перечисленные модели турбулентности могут быть использованы со следующими комбинациями граничных условий на стенке:

Название и обозначение	Скорость	Турбулентная энергия	Турбулентная диссипация/ Удельная турбулентная диссипация
«Равновесная» турбулентность (log)	Пристенная функция	Значение, вычисленное в пристенной ячейке	Значение, вычисленное в пристенной ячейке
«Неравновесная» турбулентность (neq)	Пристенная функция	$\nabla_n k = 0$	Значение, вычисленное в пристенной ячейке
Прилипание (wall)	Прилипание	$k_w = 0$	Значение, вычисленное в пристенной ячейке. Кроме KEHL и KELS: ε = 0

Результаты расчетов и их обсуждение

Сравнение моделей турбулентности проводилось на следующих примерах, относящихся к различным классам задач внешнего обтекания:

- 1. продольное обтекание гладкой пластины [6]
- 2. обтекание обратного уступа [7,8]
- 3. поперечное обтекание бесконечного цилиндра [6,9]
- 4. обтекание толстого профиля в широком диапазоне углов атаки [10].

Продольное обтекание гладкой пластины [6]

Для гладкой пластины, на которой пограничный слой турбулентен, начиная с передней кромки, для $5 \cdot 10^5 < Re_1 < 10^7$ известен закон сопротивления:

$$C_f = 0.074(Re_1)^{-\frac{1}{5}},$$
 (11)

и местный коэффициент сопротивления:

$$C_x = 0.0592(Re_x)^{-\frac{1}{5}}$$
 (12)

В действительности пограничный слой вблизи передней кромки пластины остается ламинарным и становится турбулентным только на некотором расстоянии от передней кромки. Если учесть этот ламинарный участок, то закон сопротивления при $5 \cdot 10^5 < \text{Re}_1 < 10^7$ примет следующий вид:

$$C_{f} = \frac{0.074}{\sqrt[5]{Re_{I}}} - \frac{A}{Re_{I}}, \tag{13}$$

где постоянная A определяется положение точки перехода $Re_{x\kappa p}$ ламинарной формы течения в турбулентную:

Re_{xkp}	3.10^{5}	5·10 ⁵	10^{6}	3.10^{6}
A	1050	1700	3300	8700

В расчетах получены следующие значения для местного коэффициента сопротивления (в конце пластины) для $Re_1=5\cdot10^6$:

Y+	ГУ	KES	KEQ	KEAKN	KEHL	KELS	SST	SA
2	wall			11%				7.3%
4	wall	45%	-10%	18%	3.2%	1.9%	-1.9%	12.8%
8	log	28%	24%	-2.8%			-2.5%	0.6%
25	log	-2.2%	-4.0%	-3.7%			-3.8%	1.9%
55	log	-0.5%	-0.2%	0%			0.9%	-10%
55	neq	-3.7%	-4.9%	-6.2%			-6.8%	
110	log	1.6%	2.8%	0.5%	-6.6%	-6.6%	-1.3%	-24%

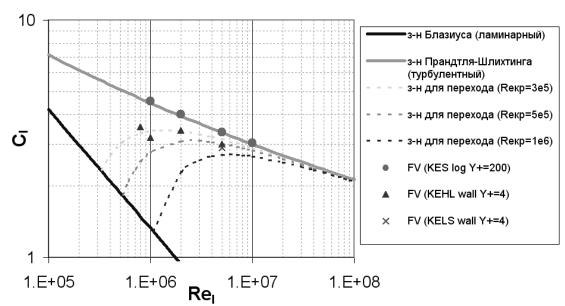
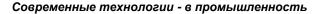



Рисунок 1 — Коэффициент сопротивление пластины в диапазоне 5 $10^5 < \text{Re}_\text{I} < 10^7$.

На основе полученных результатов можно сформулировать следующие рекомендации в зависимости от размера используемой расчетной сетки:

а) Если y+ > 30, используйте KES, KEQ, SST с граничным условием 'log',

127083, Россия, Москва, ул.Юннатов 18, офис 705

- б) Если 8 < y + < 30, используйте SST, KEAKN, SA с граничным условием 'log',
- в) Если y+<8, используйте SST, KEHL, KELS с граничным условием 'wall'.

Иными словами на сетках, не разрешающих пограничный слой, целесообразно использовать модели двухпараметрические модели KES, KEQ, SST с «равновесным» граничным условием.

Если же сетка позволяет разрешить пограничный слой (y+<8), то низкорейнольдсовые модели турбулентности без использования пристенных функций позволяют смоделировать ламинарно-турбулентный переход. Однако, следует заметить, что использование этих моделей сопряжено с рядом трудностей: они требуют хорошего начального приближения для распределения турбулентности и не позволяют использовать большие шаги по времени.

Обтекание обратного уступа [7,8]

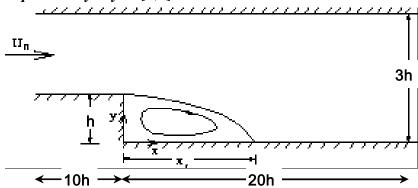


Рисунок 2 – Размеры расчетной области.

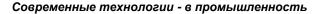
Условия и режим течения:

Re =
$$\frac{\rho V_{in} h}{\mu} = \frac{1 \cdot 1.76 \cdot 1}{2 \cdot 10^{-5}} = 88000$$

Для этих условий размер возвратной зоны в эксперименте находился в диапазоне:

$$\frac{X_r}{H} = 7 \pm 0.5$$

В двумерных расчетах на сетке 120х25 (Y+=60÷80) были получены следующие результаты:


,	Значение	Погрешность
Эксперимент	7±0.5	±7.0 %
KES	5.92	15.4 %
KEQ	7	0 %
SST	6.39	8.7 %
SA	6.45	7.9 %
KEAKN	6.81	2.9 %
KEHL	5.21	25.6 %
KELS	5.86	16.3 %

Проведенные расчеты показывают, что для описания отрывных зон целесообразно использовать модели KEAKN, SST и SA.

Поперечное обтекание бесконечного цилиндра [6,9]

Для плохо обтекаемых тел (каким является цилиндр и крыловые профили на больших углах атаки) характерным является то, что на течение в пограничном слое оказывает большое влияние наличие обратного градиента давления. Это приводит к тому, что может смещаться точка

127083, Россия, Москва, ул.Юннатов 18, офис 705

перехода ламинарного течения в турбулентное и соответственно может смещаться точка отрыва потока. Для учета этого эффекта в расчетах можно использовать следующий простой подход – в выражении для вязкого напряжения можно ввести добавку, учитывающую обратный градиент давления с демпфирующим коэффициентом [11]:

$$\mathbf{q}_{w,\text{eff}} = \mathbf{c} \, \mathbf{u}_{\tau}^2 + \mathbf{y} \cdot \nabla_{\mathbf{q}} \mathbf{P} \cdot \mathbf{\phi}$$
, где $\mathbf{\phi} > \mathbf{0}$ - демпфер градиента давления. (14)

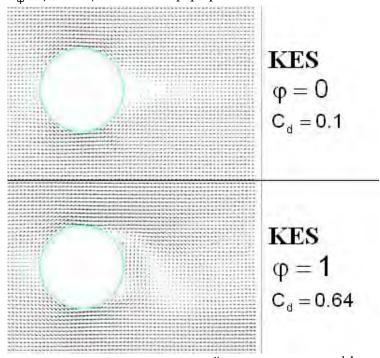


Рисунок 3 – Положение точки отрыва, размер возвратной зоны и значение коэффициента сопротивления.

В таблице приведены экспериментальные и расчетные значения для коэффициента сопротивления цилиндра. Следует заметить, что в экспериментальных работах значения коэффициента сопротивления лежат в довольно широком диапазоне (в таблице приведено среднее значение).

	Значение	Погрешность
Эксперимент	0.72	
KES	0.636	-11.6%
KEQ	0.652	-9.4 %
SST	0.644	-10.6%

Как видно из приведенных данных, учет обратного градиента давления позволяет правильно определить положение точки отрыва и, следовательно, коэффициента сопротивления плохо обтекаемого тела.

Обтекание толстого профиля в широком диапазоне углов атаки [10]

Аэродинамические характеристики толстых крыловых профилей по углу атаки определяются положением точки отрыва потока. Положение же точки отрыва определяется положением точки ламинарно-турбулентного перехода. На передней кромке профиля пограничный слой является ламинарным, для того чтобы учесть это обстоятельство можно воспользоваться «неравновесным» граничным условием (neq).

127083, Россия, Москва, ул.Юннатов 18, офис 705 Тел/факс: +7 (495) 612 44 22, 612 42 62 E-mail: info@tesis.com.ru

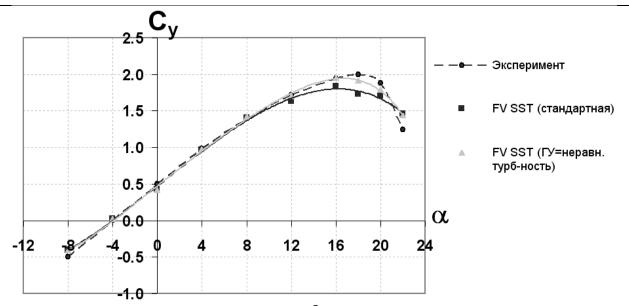


Рисунок 4 – Коэффициент подъемной силы в зависимости от угла атаки.

На приведенном графике можно видеть, как использование «неравновесной турбулентности» позволяет затянуть отрыв потока на больших углах атаки, что соответствует наличию ламинарного участка на передней кромке профиля.

Выводы и рекомендации

По расчетной сетке:

- Если у+ > 30, рекомендуются модели KES, KEQ, SST с граничным условием «равновесная турбулентность».
- Если у+ > 8, рекомендуются модели SST, KEAKN, SA с граничным условием «равновесная турбулентность».
- Если у+ < 8, рекомендуются модели SST, KEHL, KELS с ГУ «прилипание».

Отрыв за плохо обтекаемыми телами (в случае фиксированной точки отрыва):

Рекомендуются модели: KEQ, SST, KEAKN.

Наличие обратного градиента давления:

Рекомендуется включение учета градиента давления с демпфером φ=1.

Крыловые профили:

Для ламинаризованных профилей рекомендуется использовать граничное условие «неравновесная турбулентность».

Литература

- 1. D. C. Wilcox, "Turbulence modeling for CFD," DCW Industries, Inc., 1994.
- 2. F.S. Lien, W.L. Chen, and M.A. Leschziner, "Low-Reynolds-Number Eddy-Viscosity Modelling Based on Non-Linear Stress-Strain/Vorticity Relations," Proc. 3rd Symp. on Engineering Turbulence Modelling and Measurements, Crete, Greece, 1996.
- 3. F.R. Menter, M. Kuntz, and R. Langtry, "Ten years of Industrial Experience with the SST Turbulence Model" Turbulence, Heat and Mass Transfer 4, Begell House, Inc., 2003.
- 4. P. Jagadeesh and K. Murali, "Application of Low-Re Turbulence Models for Flow simulations past Underwater Vehicle Hull Forms," Journal of Naval Architecture and Marine Engineering, June 2005, pp. 41-54
- 5. C.B. Hwang, C.A. Lin "A low Reynolds number two-equation kq-eq model to predict thermal fields" International Journal of Heat and Mass Transfer, 1999, Vol. 42, pp. 3217-3230.
- 6. Г. Шлихтинг Теория пограничного слоя. М.: Наука, 1974.
- 7. J. Kim, S. J. Kline and J. P. Johnston, "Investigation of a Reattachment Turbulent Shear Layer: Flow over a Backward-Facing Step", Transactions of the ASME, Journal of Fluids Engineering. 1980, v.102, p.302-308.

Современные технологии - в промышленность

Программное обеспечение Инженерный консалтинг Вычислительная техника Измерительное оборудование

- 8. J. K. Eaton and J. P. Johnston, "A Review of Research on Subsonic Turbulent Flow Reattachment", AIAA, 1980, Paper AIAA-80-1438.
- 9. С.И. Девнин Аэрогидромеханика плохообтекаемых конструкций. Справочник. Л.: Судостроение, 1983.
- 10. R. J. McGhee, W. D. Beasley "Low-Speed Aerodynamic Characteristics of a 17-Percent-Thick Airfoil Section Designed for General Aviation Applications" NASA Langley Research Center, NASA TN B-7428.
- 11. Программный комплекс FlowVision 2003+, Руководство пользователя//Москва, Тесис, 2004 г., 311с.